Search results
Results from the WOW.Com Content Network
In mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set.
The function () = has ″ = >, so f is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points.
The Banach space (X, ǁ ⋅ ǁ) is a strictly convex space (i.e., the boundary of the unit ball B contains no line segments) if and only if δ(2) = 1, i.e., if only antipodal points (of the form x and y = −x) of the unit sphere can have distance equal to 2.
The convex-hull operation is needed for the set of convex sets to form a lattice, in which the "join" operation is the convex hull of the union of two convex sets = = ( ()). The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete lattice .
The two distinguished points are examples of extreme points of a convex set that are not exposed In mathematics, an exposed point of a convex set C {\displaystyle C} is a point x ∈ C {\displaystyle x\in C} at which some continuous linear functional attains its strict maximum over C {\displaystyle C} . [ 1 ]
Both imply very strong monotonicity properties. Both types of functions have derivatives of all orders. In the case of an absolutely monotonic function, the function as well as its derivatives of all orders must be non-negative in its domain of definition which would imply that the function as well as its derivatives of all orders are ...
It shows that any weakly convergent sequence in a normed space has a sequence of convex combinations of its members that converges strongly to the same limit, and is used in the proof of Tonelli's theorem.
For n = 2, the theorem claims that a convex figure in the Euclidean plane symmetric about the origin and with area greater than 4 encloses at least one lattice point in addition to the origin. The area bound is sharp : if S is the interior of the square with vertices (±1, ±1) then S is symmetric and convex, and has area 4, but the only ...