Search results
Results from the WOW.Com Content Network
This technology is used to add lactase to milk, thereby hydrolyzing the lactose naturally found in milk, leaving it slightly sweet but digestible by everyone. [4] Without lactase, lactose-intolerant people pass the lactose undigested to the colon [5] where bacteria break it down, creating carbon dioxide which leads to bloating and flatulence.
In a study where women were fed a diet containing galactose, 69 ± 6% of glucose and 54 ± 4% of galactose in the lactose they produced were derived directly from plasma glucose, while 7 ± 2% of the glucose and 12 ± 2% of the galactose in the lactose, were derived directly from plasma galactose. 25 ± 8% of the glucose and 35 ± 6% of the ...
β-Galactosidase is important for organisms as it is a key provider in the production of energy and a source of carbons through the break down of lactose to galactose and glucose. It is also important for lactose-intolerant people as it is responsible for making lactose-free milk and other dairy products.
Lactose, or milk sugar, is a disaccharide composed of galactose and glucose and has the molecular formula C 12 H 22 O 11.Lactose makes up around 2–8% of milk (by mass). The name comes from lact (gen. lactis), the Latin word for milk, plus the suffix -ose used to name sugars.
The LacY gene is a component of the lac operon that encodes lactose permease, a protein responsible for breaking down lactose into glucose and galactose, alongside transacetylase and beta galactosidase. The absence of lactose permease leads to the inability of lactose to enter the cell for further metabolic processes.
Lactose intolerance is the most common problem of carbohydrate digestion and occurs when the human body doesn't produce a sufficient amount of lactase enzyme to break down the sugar lactose found in dairy. As a result of this deficiency, undigested lactose is not absorbed and is instead passed on to the colon.
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
This is an autosomal recessive disorder and infants that can’t break down lactose have trouble with breastmilk, and develop diarrhea starting from birth. Sometimes, even those with lactase-persistence can develop temporary lactose intolerance as a result of infection or inflammation in the small intestine.