Search results
Results from the WOW.Com Content Network
However, surfactant decreases the alveolar surface tension, as seen in cases of premature infants with infant respiratory distress syndrome. The normal surface tension for water is 70 dyn/cm (70 mN/m) and in the lungs, it is 25 dyn/cm (25 mN/m); however, at the end of the expiration, compressed surfactant phospholipid molecules decrease the ...
In respiratory distress syndrome or RDS, surfactant replacement therapy helps patients have normal respiration by using pharmaceutical forms of the surfactants. One example of a pharmaceutical pulmonary surfactant is Survanta ( beractant ) or its generic form Beraksurf, produced by Abbvie and Tekzima respectively.
These mutations cause total absence or loss-of-function of SP-B and lead to imbalance in surfactant homeostasis. Since SP-B has a major role in surfactant biogenesis and spreading of surfactant and lipid layer, any disruption to existence of SP-B results in ineffective respiration and lethal pulmonary conditions at birth. [5]
But two factors prevent the lungs from collapsing: surfactant and the intrapleural pressure. Surfactant is a surface-active lipoprotein complex formed by type II alveolar cells. The proteins and lipids that comprise surfactant have both a hydrophilic region and a hydrophobic region. By absorbing to the air-water interface of alveoli with the ...
Surfactant therapy is the medical administration of pulmonary surfactant that is derived from outside of the body. Pulmonary surfactant is a soap-like chemical synthesized by type II alveolar pneumocytes and is of various lipids (80% phospholipids, 5-10% cholesterol, and ∼10% surfactant-associated proteins).
Surfactant homeostasis is critical for breathing (and thus survival) in the prematurely born infant, but also for maintaining lung health, and normal lung function throughout life. Changes in the amount or composition of surfactant can alter its function and are associated with respiratory diseases. [10] [11] [12] [13]
Surfactant homeostasis is critical for breathing (and thus survival) in the prematurely born infant, but also for maintaining lung health, and normal lung function throughout life. Quantitative and/or qualitative alterations in surfactant composition and/or function are associated with respiratory diseases. [11] [12] [13] [14]
Simple Diagram showing surfactant's function in stopping the collapse of the alveoli when exhaling. DPPC is an amphipathic lipid. This characteristic is due to its hydrophilic head, composed of the polar phosphatidylcholine group, and its hydrophobic tails, formed by two nonpolar palmitic acid (C 16) chains. This trait allows DPPC to easily and ...