enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Translational symmetry - Wikipedia

    en.wikipedia.org/wiki/Translational_symmetry

    For translational invariant functions : it is () = (+).The Lebesgue measure is an example for such a function.. In physics and mathematics, continuous translational symmetry is the invariance of a system of equations under any translation (without rotation).

  3. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    This article describes symmetry from three perspectives: in mathematics, including geometry, the most familiar type of symmetry for many people; in science and nature; and in the arts, covering architecture, art, and music. The opposite of symmetry is asymmetry, which refers to the absence of symmetry.

  4. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]

  5. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    For any symmetry group containing a glide reflection, the glide vector is one half of an element of the translation group. If the translation vector of a glide plane operation is itself an element of the translation group, then the corresponding glide plane symmetry reduces to a combination of reflection symmetry and translational symmetry.

  6. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    A Penrose tiling with rhombi exhibiting fivefold symmetry. A Penrose tiling is an example of an aperiodic tiling.Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches.

  7. Time-translation symmetry - Wikipedia

    en.wikipedia.org/wiki/Time-translation_symmetry

    Time-translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy. [1]

  8. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    The honeycomb is a well-known example of tessellation in nature with its hexagonal cells. [82] In botany, the term "tessellate" describes a checkered pattern, for example on a flower petal, tree bark, or fruit. Flowers including the fritillary, [83] and some species of Colchicum, are characteristically tessellate. [84]

  9. Time crystal - Wikipedia

    en.wikipedia.org/wiki/Time_crystal

    Symmetries in nature lead directly to conservation laws, something which is precisely formulated by Noether's theorem. [8]The basic idea of time-translation symmetry is that a translation in time has no effect on physical laws, i.e. that the laws of nature that apply today were the same in the past and will be the same in the future. [9]