Search results
Results from the WOW.Com Content Network
The type of symmetry is determined by the way the pieces are organized, or by the type of transformation: An object has reflectional symmetry (line or mirror symmetry) if there is a line (or in 3D a plane) going through it which divides it into two pieces that are mirror images of each other. [6]
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object
Translational invariance implies that, at least in one direction, the object is infinite: for any given point p, the set of points with the same properties due to the translational symmetry form the infinite discrete set {p + na | n ∈ Z} = p + Z a. Fundamental domains are e.g. H + [0, 1] a for any hyperplane H for which a has an
In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.
Rotational symmetry of order n, also called n-fold rotational symmetry, or discrete rotational symmetry of the n th order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of (180°, 120°, 90°, 72°, 60°, 51 3 ⁄ 7 °, etc.) does not change the object. A "1-fold" symmetry is no symmetry (all ...
Additionally, a centered lattice can cause a glide plane to exist in two directions at the same time. This type of glide plane may be indicated by a bent arrow with an arrowhead on both sides when the glide plan is parallel to the plane of the screen or a dashed and double-dotted line when the glide plane is perpendicular to the plane of the ...
The magnitude and direction are indicative of a potential change. Extending a directed line segment semi-infinitely produces a directed half-line and infinitely in both directions produces a directed line. This suggestion has been absorbed into mathematical physics through the concept of a Euclidean vector.