Search results
Results from the WOW.Com Content Network
Size comparison of Earth and Uranus. Uranus's mass is roughly 14.5 times that of Earth, making it the least massive of the giant planets. Its diameter is slightly larger than Neptune's at roughly four times that of Earth. A resulting density of 1.27 g/cm 3 makes Uranus the second least dense planet, after Saturn.
It was once expected that any icy body larger than approximately 200 km in radius was likely to be in hydrostatic equilibrium (HE). [7] However, Ceres (r = 470 km) is the smallest body for which detailed measurements are consistent with hydrostatic equilibrium, [ 8 ] whereas Iapetus (r = 735 km) is the largest icy body that has been found to ...
The moons of the trans-Neptunian objects (other than Charon) have not been included, because they appear to follow the normal situation for TNOs rather than the moons of Saturn and Uranus, and become solid at a larger size (900–1000 km diameter, rather than 400 km as for the moons of Saturn and Uranus).
A planet that is more massive than the planet Neptune. These planets are generally described as being around 5–7 times as large as Earth with estimated masses of 20–80 M E; TOI-2498b Neptunian Planet: Planets of mass similar to Uranus or Neptune; smaller than the gas giants, but still much larger than Earth. TOI-332b: Sub-Neptune
A giant planet, sometimes referred to as a jovian planet (Jove being another name for the Roman god Jupiter), is a diverse type of planet much larger than Earth. Giant planets are usually primarily composed of low-boiling point materials (), rather than rock or other solid matter, but massive solid planets can also exist.
The sizes are listed in units of Jupiter radii (R J, 71 492 km).This list is designed to include all planets that are larger than 1.7 times the size of Jupiter.Some well-known planets that are smaller than 1.7 R J (19.055 R 🜨 or 121 536.4 km) have been included for the sake of comparison.
The previously mentioned antarctic blue whale holds the title of the biggest animal on earth. It can weigh up to 400,000 pounds and reach a length of 98 feet. The giant’s heart is the size of a car.
For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+). For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI unit of the standard gravitational parameter is m 3 ⋅s −2.