enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

  3. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    In statistics and data mining, X-means clustering is a variation of k-means clustering that refines cluster assignments by repeatedly attempting subdivision, and keeping the best resulting splits, until a criterion such as the Akaike information criterion (AIC) or Bayesian information criterion (BIC) is reached. [5]

  4. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Centroid-based clustering problems such as k-means and k-medoids are special cases of the uncapacitated, metric facility location problem, a canonical problem in the operations research and computational geometry communities. In a basic facility location problem (of which there are numerous variants that model more elaborate settings), the task ...

  6. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Another method that modifies the k-means algorithm for automatically choosing the optimal number of clusters is the G-means algorithm. It was developed from the hypothesis that a subset of the data follows a Gaussian distribution. Thus, k is increased until each k-means center's data is Gaussian. This algorithm only requires the standard ...

  7. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  8. Calinski–Harabasz index - Wikipedia

    en.wikipedia.org/wiki/Calinski–Harabasz_index

    Similar to other clustering evaluation metrics such as Silhouette score, the CH index can be used to find the optimal number of clusters k in algorithms like k-means, where the value of k is not known a priori. This can be done by following these steps: Perform clustering for different values of k. Compute the CH index for each clustering result.

  9. k-SVD - Wikipedia

    en.wikipedia.org/wiki/K-SVD

    In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data.