Search results
Results from the WOW.Com Content Network
For example, human pre-miRNA 92b adopts a G-quadruplex structure which is resistant to the Dicer mediated cleavage in the cytoplasm. [75] Although either strand of the duplex may potentially act as a functional miRNA, only one strand is usually incorporated into the RNA-induced silencing complex (RISC) where the miRNA and its mRNA target interact.
Some RISCs are able to directly target the genome by recruiting histone methyltransferases to form heterochromatin at the gene locus, silencing the gene. These RISCs take the form of a RNA-induced transcriptional silencing complex (RITS). The best studied example is with the yeast RITS. [1] [23] [24]
RNA silencing describes several mechanistically related pathways which are involved in controlling and regulating gene expression. [5] [6] [7] RNA silencing pathways are associated with the regulatory activity of small non-coding RNAs (approximately 20–30 nucleotides in length) that function as factors involved in inactivating homologous sequences, promoting endonuclease activity ...
Gene silencing is the regulation of gene expression in a cell to prevent the expression of a certain gene. [ 1 ] [ 2 ] Gene silencing can occur during either transcription or translation and is often used in research.
AGO2 (grey) in complex with a microRNA (light blue) and its target mRNA (dark blue) In humans, there are eight AGO family members, some of which are investigated intensively. However, even though AGO1–4 are capable of loading miRNA, endonuclease activity and thus RNAi-dependent gene silencing exclusively belongs to AGO2.
Exportin-5 (XPO5) is a protein that, in humans, is encoded by the XPO5 gene. [5] [6] [7] In eukaryotic cells, the primary purpose of XPO5 is to export pre-microRNA (also known as pre-miRNA) out of the nucleus and into the cytoplasm, for further processing by the Dicer enzyme.
Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded non-coding RNA molecules, typically 20–24 base pairs in length, similar to microRNA (miRNA), and operating within the RNA interference (RNAi) pathway.
DNA-directed RNA interference (ddRNAi) is a gene-silencing technique that utilizes DNA constructs to activate a cell's endogenous RNA interference (RNAi) pathways. DNA constructs are designed to express self-complementary double-stranded RNAs, typically short-hairpin RNAs (shRNA), that bring about the silencing of a target gene or genes once processed. [1]