Search results
Results from the WOW.Com Content Network
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
Real analysis is an area of analysis that studies concepts such as sequences and their limits, continuity, differentiation, integration and sequences of functions. By definition, real analysis focuses on the real numbers, often including positive and negative infinity to form the extended real line.
Pages in category "Theorems in real analysis" The following 45 pages are in this category, out of 45 total. ... Taylor's theorem; Titchmarsh convolution theorem; U.
A function defined on some subset of the real line is said to be real analytic at a point if there is a neighborhood of on which is real analytic. The definition of a complex analytic function is obtained by replacing, in the definitions above, "real" with "complex" and "real line" with "complex plane".
Danskin's theorem (convex analysis) Darboux's theorem (real analysis) Darboux's theorem (symplectic topology) Davenport–Schmidt theorem (number theory, Diophantine approximations) Dawson–Gärtner theorem (asymptotic analysis) de Branges's theorem (complex analysis) de Bruijn's theorem (discrete geometry) De Bruijn–ErdÅ‘s theorem ...
Taylor's theorem – gives an approximation of a times differentiable function around a given point by a -th order Taylor-polynomial. L'Hôpital's rule – uses derivatives to help evaluate limits involving indeterminate forms; Abel's theorem – relates the limit of a power series to the sum of its coefficients
The following definition uses ideas from mathematical analysis to define jets and jet spaces. It can be generalized to smooth functions between Banach spaces , analytic functions between real or complex domains , to p-adic analysis , and to other areas of analysis.
The former is the more common definition in areas of nonlinear analysis where the function spaces involved are not necessarily Banach spaces. For instance, differentiation in Fréchet spaces has applications such as the Nash–Moser inverse function theorem in which the function spaces of interest often consist of smooth functions on a manifold .