enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    A multilevel model, however, would allow for different regression coefficients for each predictor in each location. Essentially, it would assume that people in a given location have correlated incomes generated by a single set of regression coefficients, whereas people in another location have incomes generated by a different set of coefficients.

  3. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    The phenomenon was that the heights of descendants of tall ancestors tend to regress down towards a normal average (a phenomenon also known as regression toward the mean). [9] [10] For Galton, regression had only this biological meaning, [11] [12] but his work was later extended by Udny Yule and Karl Pearson to a more general statistical context.

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Hierarchical linear models (or multilevel regression) organizes the data into a hierarchy of regressions, for example where A is regressed on B, and B is regressed on C. It is often used where the variables of interest have a natural hierarchical structure such as in educational statistics, where students are nested in classrooms, classrooms ...

  6. Hierarchical generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_generalized...

    Hierarchical generalized linear models are used when observations come from different clusters. There are two types of estimators: fixed effect estimators and random effect estimators, corresponding to parameters in : η = x β {\displaystyle \eta =\mathbf {x} {\boldsymbol {\beta }}} and in v ( u ) {\displaystyle \mathbf {v(u)} } , respectively.

  7. Fixed effects model - Wikipedia

    en.wikipedia.org/wiki/Fixed_effects_model

    The third approach is a nested estimation whereby the local estimation for individual series is programmed in as a part of the model definition. [12] This approach is the most computationally and memory efficient, but it requires proficient programming skills and access to the model programming code; although, it can be programmed including in SAS.

  8. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    The multilevel regression is the use of a multilevel model to smooth noisy estimates in the cells with too little data by using overall or nearby averages. One application is estimating preferences in sub-regions (e.g., states, individual constituencies) based on individual-level survey data gathered at other levels of aggregation (e.g ...

  9. Bivariate analysis - Wikipedia

    en.wikipedia.org/wiki/Bivariate_analysis

    The least squares regression line is a method in simple linear regression for modeling the linear relationship between two variables, and it serves as a tool for making predictions based on new values of the independent variable. The calculation is based on the method of the least squares criterion. The goal is to minimize the sum of the ...