Search results
Results from the WOW.Com Content Network
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
A proper puzzle has a unique solution. A minimal puzzle is a proper puzzle from which no clue can be removed without introducing additional solutions. Solving Sudokus from the viewpoint of a player has been explored in Denis Berthier's book "The Hidden Logic of Sudoku" (2007) [ 7 ] which considers strategies such as "hidden xy-chains".
The number associated in the combinatorial number system of degree k to a k-combination C is the number of k-combinations strictly less than C in the given ordering. This number can be computed from C = {c k, ..., c 2, c 1} with c k > ... > c 2 > c 1 as follows.
The three-choose-two combination yields two results, depending on whether a bin is allowed to have zero items. In both results the number of bins is 3. If zero is not allowed, the number of cookies should be n = 6, as described in the previous figure. If zero is allowed, the number of cookies should only be n = 3.
Claude Shannon. The Shannon number, named after the American mathematician Claude Shannon, is a conservative lower bound of the game-tree complexity of chess of 10 120, based on an average of about 10 3 possibilities for a pair of moves consisting of a move for White followed by a move for Black, and a typical game lasting about 40 such pairs of moves.
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
Lottery mathematics is used to calculate probabilities of winning or losing a lottery game. It is based primarily on combinatorics, particularly the twelvefold way and combinations without replacement. It can also be used to analyze coincidences that happen in lottery drawings, such as repeated numbers appearing across different draws. [1
A map of the 24 permutations and the 23 swaps used in Heap's algorithm permuting the four letters A (amber), B (blue), C (cyan) and D (dark red) Wheel diagram of all permutations of length = generated by Heap's algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).