Search results
Results from the WOW.Com Content Network
Calcium peroxide or calcium dioxide is the inorganic compound with the formula CaO 2. It is the peroxide (O 2 2−) salt of Ca 2+. Commercial samples can be yellowish, but the pure compound is white. It is almost insoluble in water. [3]
2. The diatomic superoxide ion O − 2 has an overall charge of −1, so each of its two equivalent oxygen atoms is assigned an oxidation state of − 1 / 2 . This ion can be described as a resonance hybrid of two Lewis structures, where each oxygen has an oxidation state of 0 in one structure and −1 in the other. For the ...
Its usage varies from about 30 to 50 kilograms (65–110 lb) per ton of steel. The quicklime neutralizes the acidic oxides, SiO 2, Al 2 O 3, and Fe 2 O 3, to produce a basic molten slag. [10] Ground quicklime is used in the production of aerated concrete such as blocks with densities of ca. 0.6–1.0 g/cm 3 (9.8–16.4 g/cu in). [10]
Calcium oxalate (in archaic terminology, oxalate of lime) is a calcium salt of oxalic acid with the chemical formula CaC 2 O 4 or Ca(COO) 2. It forms hydrates CaC 2 O 4 ·nH 2 O, where n varies from 1 to 3. Anhydrous and all hydrated forms are colorless or white.
The structure of sodium oxide has been determined by X-ray crystallography.Most alkali metal oxides M 2 O (M = Li, Na, K, Rb) crystallise in the antifluorite structure.In this motif the positions of the anions and cations are reversed relative to their positions in CaF 2, with sodium ions tetrahedrally coordinated to 4 oxide ions and oxide cubically coordinated to 8 sodium ions.
Sodium peroxide is an inorganic compound with the formula Na 2 O 2.This yellowish solid is the product of sodium ignited in excess oxygen. [3] It is a strong base. This metal peroxide exists in several hydrates and peroxyhydrates including Na 2 O 2 ·2H 2 O 2 ·4H 2 O, Na 2 O 2 ·2H 2 O, Na 2 O 2 ·2H 2 O 2, and Na 2 O 2 ·8H 2 O. [4] The octahydrate, which is simple to prepare, is white, in ...
The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO 2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson. [1] The typical reaction conditions used today were developed by G. A. Kraus.
The charge on the ion is +5 − 3 × 2 = −1, and so the formula is ClO − 3. The structure of the ion is predicted by VSEPR theory to be pyramidal, with three bonding electron pairs and one lone pair. In a similar way, The oxyanion of chlorine(III) has the formula ClO − 2, and is bent with two lone pairs and two bonding pairs.