Search results
Results from the WOW.Com Content Network
The q-value can be interpreted as the false discovery rate (FDR): the proportion of false positives among all positive results. Given a set of test statistics and their associated q-values, rejecting the null hypothesis for all tests whose q-value is less than or equal to some threshold ensures that the expected value of the false discovery rate is .
Q factor (bicycles), the width between where a bicycle's pedals attach to the cranks; q-value (statistics), the minimum false discovery rate at which the test may be called significant; Q value (nuclear science), a difference of energies of parent and daughter nuclides; Q Score, in marketing, a way to measure the familiarity of an item
However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [ 1 ] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.
q is the width of the data range measured in standard deviations, ν is the number of degrees of freedom for determining the sample standard deviation, [c] and k is the number of separate averages that form the points within the range. The equation for the pdf shown in the sections above comes from using
The Q-statistic or q-statistic is a test statistic: . The Box-Pierce test outputs a Q-statistic (uppercase) which follows the chi-squared distribution . The Ljung-Box test is a modified version of the Box-Pierce test which provides better small sample properties
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
The value of the studentized range, most often represented by the variable q, can be defined based on a random sample x 1, ..., x n from the N(0, 1) distribution of numbers, and another random variable s that is independent of all the x i, and νs 2 has a χ 2 distribution with ν degrees of freedom.