enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    Computing the remainder then consists of subtracting multiples of the generator polynomial (). This is just like decimal long division, but even simpler because the only possible multiples at each step are 0 and 1, and the subtractions borrow "from infinity" instead of reducing the upper digits. Because we do not care about the quotient, there ...

  3. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    Since the only invertible element is 1, division is the identity function. Elements of GF( p n ) may be represented as polynomials of degree strictly less than n over GF( p ). Operations are then performed modulo m(x) where m(x) is an irreducible polynomial of degree n over GF( p ), for instance using polynomial long division .

  4. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    Classical modular multiplication reduces the double-width product ab using division by N and keeping only the remainder. This division requires quotient digit estimation and correction. The Montgomery form, in contrast, depends on a constant R > N which is coprime to N, and the only division necessary in Montgomery multiplication is division by R.

  5. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    A convenient block size would be 8 bits, although this is not required. Similarly, a convenient modulus would be 255, although, again, others could be chosen. So, the simple checksum is computed by adding together all the 8-bit bytes of the message, dividing by 255 and keeping only the remainder.

  6. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  7. Synthetic division - Wikipedia

    en.wikipedia.org/wiki/Synthetic_division

    In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .

  8. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    A Euclidean division (division with remainder) can be performed within the same time bounds. The cost of a polynomial greatest common divisor between two polynomials of degree at most n can be taken as O ( n 2 ) operations in F q using classical methods, or as O ( n log 2 ( n ) log(log( n )) ) operations in F q using fast methods.

  9. Polynomial code - Wikipedia

    en.wikipedia.org/wiki/Polynomial_code

    An erroneous message can be detected in a straightforward way through polynomial division by the generator polynomial resulting in a non-zero remainder. Assuming that the code word is free of errors, a systematic code can be decoded simply by stripping away the m {\displaystyle m} checksum digits.