Search results
Results from the WOW.Com Content Network
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Knowing the volume of the unit cell of a crystalline material and its formula weight (in daltons), the density can be calculated. One dalton per cubic ångström is equal to a density of 1.660 539 066 60 g/cm 3.
See Weight for detail of mass/weight distinction and conversion. Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound. The symbol g 0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
In dimensional analysis, a ratio which converts one unit of measure into another without changing the quantity is called a conversion factor. For example, kPa and bar are both units of pressure, and 100 kPa = 1 bar. The rules of algebra allow both sides of an equation to be divided by the same expression, so this is equivalent to 100 kPa / 1 ...
The weight of the displaced fluid can be found mathematically. The mass of the displaced fluid can be expressed in terms of the density and its volume, m = ρV. The fluid displaced has a weight W = mg, where g is acceleration due to gravity. Therefore, the weight of the displaced fluid can be expressed as W = ρVg.
Reversing this yields the formula for obtaining a quantity in units of Celsius from units of Fahrenheit; one could have started with the equivalence between 100 °C and 212 °F, which yields the same formula. Hence, to convert the numerical quantity value of a temperature T[F] in degrees Fahrenheit to a numerical quantity value T[C] in degrees ...