Search results
Results from the WOW.Com Content Network
Momentum is also conserved in special relativity (with a modified formula) and, in a modified form, in electrodynamics, quantum mechanics, quantum field theory, and general relativity. It is an expression of one of the fundamental symmetries of space and time: translational symmetry.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which ...
Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
This provides us with a method for calculating the expected values of many microscopic quantities. We add the quantity artificially to the microstate energies (or, in the language of quantum mechanics, to the Hamiltonian), calculate the new partition function and expected value, and then set λ to zero in the final
Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object: =, so the impulse J delivered by a steady force F acting for time Δ t is: J = F Δ t . {\displaystyle \mathbf {J} =\mathbf {F} \Delta t.}
The definition of angular momentum for a single point particle is: = where p is the particle's linear momentum and r is the position vector from the origin. The time-derivative of this is: The time-derivative of this is:
When momentum crosses up through zero it corresponds to a trough in the SMA, and when it crosses down through zero it's a peak. How high (or low) momentum gets represents how steeply the SMA is rising (or falling). The TRIX indicator is similarly based on changes in a moving average (a triple exponential in that case).