Search results
Results from the WOW.Com Content Network
Real floating-point type, usually mapped to an extended precision floating-point number format. Actual properties unspecified. Actual properties unspecified. It can be either x86 extended-precision floating-point format (80 bits, but typically 96 bits or 128 bits in memory with padding bytes ), the non-IEEE " double-double " (128 bits), IEEE ...
This means that numbers that appear to be short and exact when written in decimal format may need to be approximated when converted to binary floating-point. For example, the decimal number 0.1 is not representable in binary floating-point of any finite precision; the exact binary representation would have a "1100" sequence continuing endlessly:
To approximate the greater range and precision of real numbers, we have to abandon signed integers and fixed-point numbers and go to a "floating-point" format. In the decimal system, we are familiar with floating-point numbers of the form (scientific notation): 1.1030402 × 10 5 = 1.1030402 × 100000 = 110304.02. or, more compactly: 1.1030402E5
A decimal data type could be implemented as either a floating-point number or as a fixed-point number. In the fixed-point case, the denominator would be set to a fixed power of ten. In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied.
For other binary formats, the required number of decimal digits is [h] + ⌈ ⌉, where p is the number of significant bits in the binary format, e.g. 237 bits for binary256. When using a decimal floating-point format, the decimal representation will be preserved using:
If a decimal string with at most 6 significant digits is converted to the IEEE 754 single-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 single-precision number is converted to a decimal string with at least 9 ...
Decimal floating-point (DFP) arithmetic refers to both a representation and operations on decimal floating-point numbers. Working directly with decimal (base-10) fractions can avoid the rounding errors that otherwise typically occur when converting between decimal fractions (common in human-entered data, such as measurements or financial ...
Floating-point constants may be written in decimal notation, e.g. 1.23. Decimal scientific notation may be used by adding e or E followed by a decimal exponent, also known as E notation, e.g. 1.23e2 (which has the value 1.23 × 10 2 = 123.0). Either a decimal point or an exponent is required (otherwise, the number is parsed as an integer constant).