enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    For the following definitions, two examples will be used. The first is the problem of character recognition given an array of bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as negative.

  3. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Semi-supervised anomaly detection techniques assume that some portion of the data is labelled. This may be any combination of the normal or anomalous data, but more often than not, the techniques construct a model representing normal behavior from a given normal training data set, and then test the likelihood of a test instance to be generated ...

  4. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    This solves the problem of different features having vastly different scales, for example if one feature is measured in kilometers and another in nanometers. Activation normalization, on the other hand, is specific to deep learning, and includes methods that rescale the activation of hidden neurons inside neural networks.

  5. Self-supervised learning - Wikipedia

    en.wikipedia.org/wiki/Self-supervised_learning

    Self-GenomeNet is an example of self-supervised learning in genomics. [18] Self-supervised learning continues to gain prominence as a new approach across diverse fields. Its ability to leverage unlabeled data effectively opens new possibilities for advancement in machine learning, especially in data-driven application domains.

  6. Weak supervision - Wikipedia

    en.wikipedia.org/wiki/Weak_supervision

    Self-training is a wrapper method for semi-supervised learning. [14] First a supervised learning algorithm is trained based on the labeled data only. This classifier is then applied to the unlabeled data to generate more labeled examples as input for the supervised learning algorithm.

  7. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    Autoencoders are applied to many problems, including facial recognition, [5] feature detection, [6] anomaly detection, and learning the meaning of words. [ 7 ] [ 8 ] In terms of data synthesis , autoencoders can also be used to randomly generate new data that is similar to the input (training) data.

  8. Differentiable programming - Wikipedia

    en.wikipedia.org/wiki/Differentiable_programming

    The C++ heyoka and python package heyoka.py make large use of this technique to offer advanced differentiable programming capabilities (also at high orders). A package for the Julia programming language – Zygote – works directly on Julia's intermediate representation .

  9. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.