enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...

  3. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.

  4. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...

  5. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    Quotient and remainder using ceiling division. Common Lisp also uses ceiling division, for which the quotient is defined by = ⌈ ⌉ where ⌈⌉ is the ceiling function (rounding up). Thus according to equation , the remainder has the opposite sign of that of the divisor:

  6. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  7. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    In each step k of the Euclidean algorithm, the quotient q k and remainder r k are computed for a given pair of integers r k−2 and r k−1. r k−2 = q k r k−1 + r k. The computational expense per step is associated chiefly with finding q k, since the remainder r k can be calculated quickly from r k−2, r k−1, and q k. r k = r k−2 − q ...

  8. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem. The factor theorem is another application of the remainder theorem: if the remainder is zero, then the linear divisor is a factor. Repeated application of the factor theorem may be used to factorize the polynomial.

  9. Quotient - Wikipedia

    en.wikipedia.org/wiki/Quotient

    The quotient is also less commonly defined as the greatest whole number of times a divisor may be subtracted from a dividend—before making the remainder negative. For example, the divisor 3 may be subtracted up to 6 times from the dividend 20, before the remainder becomes negative: 20 − 3 − 3 − 3 − 3 − 3 − 3 ≥ 0, while