enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a ...

  3. Helmholtz's theorems - Wikipedia

    en.wikipedia.org/wiki/Helmholtz's_theorems

    A fluid element that is initially irrotational remains irrotational. Helmholtz's theorems apply to inviscid flows. In observations of vortices in real fluids the strength of the vortices always decays gradually due to the dissipative effect of viscous forces. Alternative expressions of the three theorems are as follows:

  4. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...

  5. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The free Euler equations are conservative, in the sense they are equivalent to a conservation equation: + =, or simply in Einstein notation: + =, where the conservation quantity in this case is a vector, and is a flux matrix. This can be simply proved.

  6. Potential flow - Wikipedia

    en.wikipedia.org/wiki/Potential_flow

    In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity , i.e., for an inviscid fluid and with no vorticity present in the flow.

  7. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    In deriving the Kutta–Joukowski theorem, the assumption of irrotational flow was used. When there are free vortices outside of the body, as may be the case for a large number of unsteady flows, the flow is rotational. When the flow is rotational, more complicated theories should be used to derive the lift forces.

  8. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    The pressure coefficient can be estimated for irrotational and isentropic flow by introducing the potential and the perturbation potential , normalized by the free-stream velocity Φ = u ∞ x + ϕ ( x , y , z ) {\displaystyle \Phi =u_{\infty }x+\phi (x,y,z)}

  9. Helmholtz decomposition - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_decomposition

    The Helmholtz decomposition in three dimensions was first described in 1849 [9] by George Gabriel Stokes for a theory of diffraction. Hermann von Helmholtz published his paper on some hydrodynamic basic equations in 1858, [10] [11] which was part of his research on the Helmholtz's theorems describing the motion of fluid in the vicinity of vortex lines. [11]