enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perturbation theory - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory

    An approximate 'perturbation solution' is obtained by truncating the series, often keeping only the first two terms, the solution to the known problem and the 'first order' perturbation correction. Perturbation theory is used in a wide range of fields and reaches its most sophisticated and advanced forms in quantum field theory.

  3. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    In practice, convergent perturbation expansions often converge slowly while divergent perturbation expansions sometimes give good results, c.f. the exact solution, at lower order. [ 1 ] In the theory of quantum electrodynamics (QED), in which the electron – photon interaction is treated perturbatively, the calculation of the electron's ...

  4. Poincaré–Lindstedt method - Wikipedia

    en.wikipedia.org/wiki/Poincaré–Lindstedt_method

    In perturbation theory, the Poincaré–Lindstedt method or Lindstedt–Poincaré method is a technique for uniformly approximating periodic solutions to ordinary differential equations, when regular perturbation approaches fail.

  5. Vienna Ab initio Simulation Package - Wikipedia

    en.wikipedia.org/wiki/Vienna_Ab_initio...

    The Vienna Ab initio Simulation Package, better known as VASP, is a package written primarily in Fortran for performing ab initio quantum mechanical calculations using either Vanderbilt pseudopotentials, or the projector augmented wave method, and a plane wave basis set. [2]

  6. Interaction picture - Wikipedia

    en.wikipedia.org/wiki/Interaction_picture

    By utilizing the interaction picture, one can use time-dependent perturbation theory to find the effect of H 1,I, [15]: 355ff e.g., in the derivation of Fermi's golden rule, [15]: 359–363 or the Dyson series [15]: 355–357 in quantum field theory: in 1947, Shin'ichirō Tomonaga and Julian Schwinger appreciated that covariant perturbation ...

  7. Multiple-scale analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple-scale_analysis

    In mathematics and physics, multiple-scale analysis (also called the method of multiple scales) comprises techniques used to construct uniformly valid approximations to the solutions of perturbation problems, both for small as well as large values of the independent variables.

  8. Zeeman effect - Wikipedia

    en.wikipedia.org/wiki/Zeeman_effect

    If the interaction term is small (less than the fine structure), it can be treated as a perturbation; this is the Zeeman effect proper. In the Paschen–Back effect, described below, V M {\displaystyle V_{M}} exceeds the LS coupling significantly (but is still small compared to H 0 {\displaystyle H_{0}} ).

  9. Singular perturbation - Wikipedia

    en.wikipedia.org/wiki/Singular_perturbation

    Singular perturbation theory is a rich and ongoing area of exploration for mathematicians, physicists, and other researchers. The methods used to tackle problems in this field are many. The more basic of these include the method of matched asymptotic expansions and WKB approximation for spatial problems, and in time, the Poincaré–Lindstedt ...