Search results
Results from the WOW.Com Content Network
if L > 1 the series converges (this includes the case L = ∞) if L < 1 the series diverges; and if L = 1 the test is inconclusive. An alternative formulation of this test is as follows. Let { a n} be a series of real numbers. Then if b > 1 and K (a natural number) exist such that
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
A fundamental domain for the ideal Z[ω]β = Zβ + Zωβ, acting by translations on the complex plane, is the 60°–120° rhombus with vertices 0, β, ωβ, β + ωβ. Any Eisenstein integer α lies inside one of the translates of this parallelogram, and the quotient κ is one of its vertices.
When every term of a series is a non-negative real number, for instance when the terms are the absolute values of another series of real numbers or complex numbers, the sequence of partial sums is non-decreasing. Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound ...
Abel's uniform convergence test is a criterion for the uniform convergence of a series of functions or an improper integration of functions dependent on parameters. It is related to Abel's test for the convergence of an ordinary series of real numbers, and the proof relies on the same technique of summation by parts. The test is as follows.
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables z i. Equivalently, they are locally uniform limits of polynomials; or locally square-integrable solutions to the n-dimensional Cauchy–Riemann equations.
The numbers whose trajectory under iteration of sum of squares of digits map includes 1. A007770: Factorial primes: 2, 3, 5, 7, 23, 719, 5039, 39916801, ... A prime number that is one less or one more than a factorial (all factorials > 1 are even). A088054: Wolstenholme primes: 16843, 2124679