enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Center (group theory) - Wikipedia

    en.wikipedia.org/wiki/Center_(group_theory)

    The center of the symmetric group, S n, is trivial for n ≥ 3. The center of the alternating group, A n, is trivial for n ≥ 4. The center of the general linear group over a field F, GL n (F), is the collection of scalar matrices, { sI n ∣ s ∈ F \ {0} }. The center of the orthogonal group, O n (F) is {I n, −I n}.

  3. Central charge - Wikipedia

    en.wikipedia.org/wiki/Central_charge

    More precisely, the central charge is the charge that corresponds, by Noether's theorem, to the center of the central extension of the symmetry group. In theories with supersymmetry, this definition can be generalized to include supergroups and Lie superalgebras. A central charge is any operator which commutes with all the other supersymmetry ...

  4. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    In the theory of Coxeter groups, the symmetric group is the Coxeter group of type A n and occurs as the Weyl group of the general linear group. In combinatorics , the symmetric groups, their elements ( permutations ), and their representations provide a rich source of problems involving Young tableaux , plactic monoids , and the Bruhat order .

  5. Symmetry group - Wikipedia

    en.wikipedia.org/wiki/Symmetry_group

    In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object.

  6. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    Inversion (i ) is a more complex operation. Each point moves through the center of the molecule to a position opposite the original position and as far from the central point as where it started. Many molecules that seem at first glance to have an inversion center do not; for example, methane and other tetrahedral molecules lack inversion ...

  7. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    D nh is the symmetry group for a "regular" n-gonal prism and also for a "regular" n-gonal bipyramid. D nd is the symmetry group for a "regular" n-gonal antiprism, and also for a "regular" n-gonal trapezohedron. D n is the symmetry group of a partially rotated ("twisted") prism. The groups D 2 and D 2h are noteworthy in that there is no special ...

  8. Central subgroup - Wikipedia

    en.wikipedia.org/wiki/Central_subgroup

    In mathematics, in the field of group theory, a subgroup of a group is termed central if it lies inside the center of the group. Given a group G {\displaystyle G} , the center of G {\displaystyle G} , denoted as Z ( G ) {\displaystyle Z(G)} , is defined as the set of those elements of the group which commute with every element of the group.

  9. List of planar symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_planar_symmetry_groups

    This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...