enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]

  3. Transition-rate matrix - Wikipedia

    en.wikipedia.org/wiki/Transition-rate_matrix

    In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.

  4. Discrete-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Markov_chain

    A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.

  5. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    A stochastic matrix describes a Markov chain X t over a finite state space S with cardinality α.. If the probability of moving from i to j in one time step is Pr(j|i) = P i,j, the stochastic matrix P is given by using P i,j as the i-th row and j-th column element, e.g.,

  6. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is

  7. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to ...

  8. Category:Markov processes - Wikipedia

    en.wikipedia.org/wiki/Category:Markov_processes

    This category is for articles about the theory of Markov chains and processes, and associated processes. See Category:Markov models for models for specific applications that make use of Markov processes.

  9. Markov Chains and Mixing Times - Wikipedia

    en.wikipedia.org/wiki/Markov_Chains_and_Mixing_Times

    The mixing time of a Markov chain is the number of steps needed for this convergence to happen, to a suitable degree of accuracy. A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains ...