Search results
Results from the WOW.Com Content Network
In 1998, Merrill Lynch said "unstructured data comprises the vast majority of data found in an organization, some estimates run as high as 80%." [1] It's unclear what the source of this number is, but nonetheless it is accepted by some. [2] Other sources have reported similar or higher percentages of unstructured data. [3] [4] [5]
Typical unstructured data sources include web pages, emails, documents, PDFs, social media, scanned text, mainframe reports, spool files, multimedia files, etc. Extracting data from these unstructured sources has grown into a considerable technical challenge, where as historically data extraction has had to deal with changes in physical hardware formats, the majority of current data extraction ...
[6] [7] Predictive analytics focuses on the application of statistical models for predictive forecasting or classification, while text analytics applies statistical, linguistic, and structural techniques to extract and classify information from textual sources, a species of unstructured data. All of the above are varieties of data analysis. [8]
Structured data is semantically well-defined data from a chosen target domain, interpreted with respect to category and context. Information extraction is the part of a greater puzzle which deals with the problem of devising automatic methods for text management, beyond its transmission, storage and display.
A data lake is a system or repository of data stored in its natural/raw format, [1] usually object blobs or files. A data lake is usually a single store of data including raw copies of source system data, sensor data, social data etc., [2] and transformed data used for tasks such as reporting, visualization, advanced analytics, and machine ...
Knowledge extraction is the creation of knowledge from structured (relational databases, XML) and unstructured (text, documents, images) sources.The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing.
The characteristic of the changing formats, structure, or sources of big data. Big data can include structured, unstructured, or combinations of structured and unstructured data. Big data analysis may integrate raw data from multiple sources. The processing of raw data may also involve transformations of unstructured data to structured data.
Data science is an interdisciplinary academic field [1] that uses statistics, scientific computing, scientific methods, processing, scientific visualization, algorithms and systems to extract or extrapolate knowledge and insights from potentially noisy, structured, or unstructured data. [2]