Search results
Results from the WOW.Com Content Network
A binary clock might use LEDs to express binary values. In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time. In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually ...
Time Technology's Samui Moon binary-coded sexagesimal wristwatch. This clock reads 3:25. Binary clocks that display time in binary-coded sexagesimal also exist. Instead of representing each digit of traditional sexagesimal time with one binary number, each component of traditional sexagesimal time is represented with one binary number, that is, using up to 6 bits instead of only 4.
French decimal clock from the time of the French Revolution. The large dial shows the ten hours of the decimal day in Arabic numerals, while the small dial shows the two 12-hour periods of the standard 24-hour day in Roman numerals. Decimal time is the representation of the time of day using units which are decimally related.
The dual-slope conversion can take a long time: a thousand or so clock ticks in the scheme described above. That limits how often a measurement can be made (dead time). Resolution of 1 ps with a 100 MHz (10 ns) clock requires a stretch ratio of 10,000 and implies a conversion time of 150 μs. [13]
The word 'Wikipedia' represented in ASCII binary code, made up of 9 bytes (72 bits). A binary code represents text, computer processor instructions, or any other data using a two-symbol system. The two-symbol system used is often "0" and "1" from the binary number system. The binary code assigns a pattern of binary digits, also known as bits ...
The first commercial microprocessor was the binary-coded decimal (BCD-based) Intel 4004, [2] [3] developed for calculator applications in 1971; it had a 4-bit word length, but had 8-bit instructions and 12-bit addresses.
Metric time is the measure of time intervals using the metric system. The modern SI system defines the second as the base unit of time, and forms multiples and submultiples with metric prefixes such as kiloseconds and milliseconds. Other units of time – minute, hour, and day – are accepted for use with SI, but are not part of it
The default OperandSize and AddressSize to use for each instruction is given by the D bit of the segment descriptor of the current code segment - D=0 makes both 16-bit, D=1 makes both 32-bit. Additionally, they can be overridden on a per-instruction basis with two new instruction prefixes that were introduced in the 80386: