Search results
Results from the WOW.Com Content Network
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
Sum of the distance between the vertices and the difference of their colors is greater than k + 1, where k is a positive integer. Rank coloring If two vertices have the same color i, then every path between them contain a vertex with color greater than i Subcoloring An improper vertex coloring where every color class induces a union of cliques
The sum of the labels is 11, smaller than could be achieved using only two labels. In graph theory, a sum coloring of a graph is a labeling of its vertices by positive integers, with no two adjacent vertices having equal labels, that minimizes the sum of the labels. The minimum sum that can be achieved is called the chromatic sum of the graph. [1]
Today, a more standard phrasing of Archimedes' proposition is that the partial sums of the series 1 + 1 / 4 + 1 / 16 + ⋯ are: + + + + = +. This form can be proved by multiplying both sides by 1 − 1 / 4 and observing that all but the first and the last of the terms on the left-hand side of the equation cancel in pairs.
For instance, for Alcuin's version of the problem, =: a camel can carry 30 measures of grain and can travel one leuca while eating a single measure, where a leuca is a unit of distance roughly equal to 2.3 kilometres (1.4 mi).
An approximation algorithm to SSP aims to find a subset of S with a sum of at most T and at least r times the optimal sum, where r is a number in (0,1) called the approximation ratio. Simple 1/2-approximation
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In computational complexity theory, the 3SUM problem asks if a given set of real numbers contains three elements that sum to zero. A generalized version, k-SUM, asks the same question on k elements, rather than simply 3. 3SUM can be easily solved in () time, and matching (⌈ / ⌉) lower bounds are known in some specialized models of computation (Erickson 1999).