Search results
Results from the WOW.Com Content Network
The viscous forces that arise during fluid flow are distinct from the elastic forces that occur in a solid in response to shear, compression, or extension stresses. While in the latter the stress is proportional to the amount of shear deformation, in a fluid it is proportional to the rate of deformation over time.
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return ...
One of the key predictions of the theory is the following relationship between viscosity , thermal conductivity, and specific heat : k = f μ c v {\displaystyle k=f\mu c_{v}} where f {\displaystyle f} is a constant which in general depends on the details of intermolecular interactions, but for spherically symmetric molecules is very close to 2. ...
In condensed matter physics and physical chemistry, the terms viscous liquid, supercooled liquid, and glass forming liquid are often used interchangeably to designate liquids that are at the same time highly viscous (see Viscosity of amorphous materials), can be or are supercooled, and able to form a glass.
The shear viscosity (or viscosity, in short) of a fluid is a material property that describes the friction between internal neighboring fluid surfaces (or sheets) flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move (or "to jump") between these ...
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations. [2]
Slender-body theory is a methodology used in Stokes flow problems to estimate the force on, or flow field around, a long slender object in a viscous fluid. The shallow-water equations can be used to describe a layer of relatively inviscid fluid with a free surface , in which surface gradients are small.
A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point ... gas both experimentally and from the kinetic theory; ...