enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    A substochastic matrix is a real square matrix whose row sums are all ; In the same vein, one may define a probability vector as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right stochastic matrix (or column of a left stochastic matrix) is a probability vector.

  3. Transition-rate matrix - Wikipedia

    en.wikipedia.org/wiki/Transition-rate_matrix

    In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.

  4. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    The columns can be labelled "sunny" and "rainy", and the rows can be labelled in the same order. The above matrix as a graph. (P) i j is the probability that, if a given day is of type i, it will be followed by a day of type j. Notice that the rows of P sum to 1: this is because P is a stochastic matrix. [4]

  5. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.

  6. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is

  7. Additive Markov chain - Wikipedia

    en.wikipedia.org/wiki/Additive_Markov_chain

    An additive Markov chain of order m is a sequence of random variables X 1, X 2, X 3, ..., possessing the following property: the probability that a random variable X n has a certain value x n under the condition that the values of all previous variables are fixed depends on the values of m previous variables only (Markov chain of order m), and the influence of previous variables on a generated ...

  8. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state. An example use of a Markov chain is Markov chain Monte Carlo, which uses the Markov property to prove that a particular method for performing a random walk will sample from the joint distribution.

  9. Markov reward model - Wikipedia

    en.wikipedia.org/wiki/Markov_reward_model

    In probability theory, a Markov reward model or Markov reward process is a stochastic process which extends either a Markov chain or continuous-time Markov chain by adding a reward rate to each state. An additional variable records the reward accumulated up to the current time. [1]