enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    In fact, a given n-by-n matrix A is similar to a diagonal matrix (meaning that there is a matrix X such that X −1 AX is diagonal) if and only if it has n linearly independent eigenvectors. Such matrices are said to be diagonalizable .

  3. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  4. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  5. Toeplitz matrix - Wikipedia

    en.wikipedia.org/wiki/Toeplitz_matrix

    The set of Toeplitz matrices is a subspace of the vector space of matrices (under matrix addition and scalar multiplication). Two Toeplitz matrices may be added in O ( n ) {\displaystyle O(n)} time (by storing only one value of each diagonal) and multiplied in O ( n 2 ) {\displaystyle O(n^{2})} time.

  6. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  7. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    The system Q(Rx) = b is solved by Rx = Q T b = c, and the system Rx = c is solved by 'back substitution'. The number of additions and multiplications required is about twice that of using the LU solver, but no more digits are required in inexact arithmetic because the QR decomposition is numerically stable .

  8. Idempotent matrix - Wikipedia

    en.wikipedia.org/wiki/Idempotent_matrix

    [1] [2] That is, the matrix is idempotent if and only if =. For this product A 2 {\displaystyle A^{2}} to be defined , A {\displaystyle A} must necessarily be a square matrix . Viewed this way, idempotent matrices are idempotent elements of matrix rings .

  9. Conformable matrix - Wikipedia

    en.wikipedia.org/wiki/Conformable_matrix

    Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. That is, if A is an m × n matrix and B is an s × p matrix, then n needs to be equal to s for the matrix product AB to be defined.