Search results
Results from the WOW.Com Content Network
Implicitly, all the analysis has been for the Method 2 approach, taking one measurement (e.g., of T) at a time, and processing it through Eq(2) to obtain an estimate of g. To use the various equations developed above, values are needed for the mean and variance of the several parameters that appear in those equations.
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
Fornasini, Paolo (2008), The uncertainty in physical measurements: an introduction to data analysis in the physics laboratory, Springer, p. 161, ISBN 978-0-387-78649-0 Meyer, Stuart L. (1975), Data Analysis for Scientists and Engineers , Wiley, ISBN 978-0-471-59995-1
If the instrument has a needle which points to a scale graduated in steps of 0.1 units, then depending on the design of the instrument it is usually possible to estimate tenths between the successive marks on the scale, so it should be possible to read off the result to an accuracy of about 0.01 units.
Measurement errors can be divided into two components: random and systematic. [2] Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Random errors create measurement uncertainty. Systematic errors are errors that are not determined ...
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
According to ISO 5725-1, accuracy consists of trueness (proximity of the mean of measurement results to the true value) and precision (repeatability or reproducibility of the measurement). While precision is a description of random errors (a measure of statistical variability ), accuracy has two different definitions:
He took extreme measures to isolate the equipment from seismic and other interferences, but Weber's criteria for data analysis turned out to be ill-defined and partly subjective. In 1974, the first indirect detection of gravitational waves was confirmed from observations of a binary pulsar , but by the end of the 1970s, Weber's work was ...