enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph continuous function - Wikipedia

    en.wikipedia.org/wiki/Graph_continuous_function

    Function : is graph continuous if for all there exists a function : such that ((),) is continuous at .. Dasgupta and Maskin named this property "graph continuity" because, if one plots a graph of a player's payoff as a function of his own strategy (keeping the other players' strategies fixed), then a graph-continuous payoff function will result in this graph changing continuously as one varies ...

  3. Mountain climbing problem - Wikipedia

    en.wikipedia.org/wiki/Mountain_climbing_problem

    A trivial example. In mathematics, the mountain climbing problem is a mathematical problem that considers a two-dimensional mountain range (represented as a continuous function), and asks whether it is possible for two mountain climbers starting at sea level on the left and right sides of the mountain to meet at the summit, while maintaining equal altitudes at all times.

  4. Closed graph property - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_property

    f has a sequentially closed graph (in X × Y); Function with a sequentially closed graph. If f : X → Y is a function then the following are equivalent: f has a sequentially closed graph (in X × Y); (definition) the graph of f is a sequentially closed subset of X × Y; for every x ∈ X and sequence x • = (x i) ∞

  5. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    An example of non-compact is the real line, which allows the discontinuous function with closed graph () = {,. Also, closed linear operators in functional analysis (linear operators with closed graphs) are typically not continuous.

  6. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The usual proof of the closed graph theorem employs the open mapping theorem.It simply uses a general recipe of obtaining the closed graph theorem from the open mapping theorem; see closed graph theorem § Relation to the open mapping theorem (this deduction is formal and does not use linearity; the linearity is needed to appeal to the open mapping theorem which relies on the linearity.)

  7. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.

  8. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.

  9. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    For functions that are not uniformly continuous, this isn't possible; for these functions, the graph might lie inside the height of the rectangle at some point on the graph but there is a point on the graph where the graph lies above or below the rectangle.