Search results
Results from the WOW.Com Content Network
Isothermal titration calorimetry (ITC), is considered as the most quantitative technique available for measuring the thermodynamic properties of protein–protein interactions and is becoming a necessary tool for protein–protein complex structural studies. This technique relies upon the accurate measurement of heat changes that follow the ...
Protein–protein interaction prediction is a field combining bioinformatics and structural biology in an attempt to identify and catalog physical interactions between pairs or groups of proteins. Understanding protein–protein interactions is important for the investigation of intracellular signaling pathways, modelling of protein complex ...
Extensions of the model have been proposed for lattices of proteins by various authors. [5] [6] [7] Edelstein argued that the MWC model gave a better account of the data for hemoglobin than the sequential model [3] could do. [8] He and Changeux [9] applied the model to signal transduction. Changeux [10] has discussed the status of the model ...
The model is used in a variety of biochemical situations other than enzyme-substrate interaction, including antigen–antibody binding, DNA–DNA hybridization, and protein–protein interaction. [ 17 ] [ 18 ] It can be used to characterize a generic biochemical reaction, in the same way that the Langmuir equation can be used to model generic ...
The protein protein interactions are displayed in a signed network that describes what type of interactions that are taking place [74] Protein–protein interactions often result in one of the interacting proteins either being 'activated' or 'repressed'. Such effects can be indicated in a PPI network by "signs" (e.g. "activation" or "inhibition").
Monod-Wyman-Changeux model reaction scheme of a protein made up of two protomers. The protomer can exist under two states, each with a different affinity for the ligand. L is the ratio of states in the absence of ligand, c is the ratio of affinities. Energy diagram of a Monod-Wyman-Changeux model of a protein made up of two protomers.
The favoured model for the enzyme–substrate interaction is the induced fit model. [53] This model proposes that the initial interaction between enzyme and substrate is relatively weak, but that these weak interactions rapidly induce conformational changes in the enzyme that strengthen binding.
Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction. Protein function is a broad term: the roles of proteins range from catalysis of biochemical reactions to transport to signal ...