Search results
Results from the WOW.Com Content Network
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
Sidereal time is a "time scale that is based on Earth's rate of rotation measured relative to the fixed stars". [ 1 ] Viewed from the same location , a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day (also known as the sidereal ...
Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface. The rotation of a star produces an equatorial bulge due to centrifugal force .
A companion paper by Maarten Schmidt showed that this rotation curve could be fit by a flattened mass distribution more extensive than the light. [9] In 1959, Louise Volders used the same telescope to demonstrate that the spiral galaxy M33 also does not spin as expected according to Keplerian dynamics. [10]
Fig 4–2. Relativistic time dilation, as depicted in a single Loedel spacetime diagram. Both observers consider the clock of the other as running slower. Relativistic time dilation refers to the fact that a clock (indicating its proper time in its rest frame) that moves relative to an observer is observed to run slower. The situation is ...
Shows just over one full rotation, which lasts 3.7474 hours. In astronomy, a light curve is a graph of the light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y-axis and with time on the x-axis. The light is usually in a particular frequency interval or band.
Earth's rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth's crust; this is called polar motion. Precession is a rotation of Earth's rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies.
The Sun travels in a nearly circular orbit (the solar circle) about the center of the galaxy at a speed of about 220 km/s at a radius of 8,000 parsecs (26,000 ly) from Sagittarius A* [5] [6] which can be taken as the rate of rotation of the Milky Way itself at this radius. [7] [8]