enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    The first property implies that every rhombus is a parallelogram. A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the ...

  3. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    A square can also be defined as a parallelogram with equal diagonals that bisect the angles. If a figure is both a rectangle (right angles) and a rhombus (equal edge lengths), then it is a square. A square has a larger area than any other quadrilateral with the same perimeter. [7]

  4. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    RhombusA parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a rhomboid but this term is not used in modern mathematics. [1] SquareA parallelogram with four sides of equal length and angles of equal size (right angles).

  5. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram). A square is a limiting case of both a kite and a rhombus. Orthodiagonal quadrilaterals that are also equidiagonal quadrilaterals are called midsquare quadrilaterals. [2]

  6. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).

  7. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    A quadrilateral is a kite if and only if any one of the following conditions is true: The four sides can be split into two pairs of adjacent equal-length sides. [7] One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects ...

  8. Rhomboid - Wikipedia

    en.wikipedia.org/wiki/Rhomboid

    Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...

  9. Equidiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Equidiagonal_quadrilateral

    A convex quadrilateral is equidiagonal if and only if its Varignon parallelogram, the parallelogram formed by the midpoints of its sides, is a rhombus.An equivalent condition is that the bimedians of the quadrilateral (the diagonals of the Varignon parallelogram) are perpendicular.