Search results
Results from the WOW.Com Content Network
The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
It is a generalization of the master theorem for divide-and-conquer recurrences, which assumes that the sub-problems have equal size. It is named after mathematicians Mohamad Akra and Louay Bazzi. It is named after mathematicians Mohamad Akra and Louay Bazzi.
The Data Authentication Algorithm (DAA) is a former U.S. government standard for producing cryptographic message authentication codes. DAA is defined in FIPS PUB 113, [1] which was withdrawn on September 1, 2008. [citation needed] The algorithm is not considered secure by today's standards.
For looking up a given entry in a given ordered list, both the binary and the linear search algorithm (which ignores ordering) can be used. The analysis of the former and the latter algorithm shows that it takes at most log 2 n and n check steps, respectively, for a list of size n.
The bracket integration method (method of brackets) applies Ramanujan's master theorem to a broad range of integrals. [7] The bracket integration method generates the integrand's series expansion , creates a bracket series, identifies the series coefficient and formula parameters and computes the integral.
As another example of a divide-and-conquer algorithm that did not originally involve computers, Donald Knuth gives the method a post office typically uses to route mail: letters are sorted into separate bags for different geographical areas, each of these bags is itself sorted into batches for smaller sub-regions, and so on until they are ...