enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.

  3. Asymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_relation

    For example, the restriction of < from the reals to the integers is still asymmetric, and the converse or dual > of < is also asymmetric. An asymmetric relation need not have the connex property . For example, the strict subset relation ⊊ {\displaystyle \,\subsetneq \,} is asymmetric, and neither of the sets { 1 , 2 } {\displaystyle \{1,2 ...

  4. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric for all x, y ∈ X, if xRy then not yRx. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. [12] For example, > is an asymmetric relation, but ≥ is not.

  5. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").

  6. Homogeneous relation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_relation

    A relation is asymmetric if and only if it is both antisymmetric and irreflexive. [9] For example, > is an asymmetric relation, but ≥ is not. Again, the previous 3 alternatives are far from being exhaustive; as an example over the natural numbers, the relation xRy defined by x > 2 is neither symmetric nor antisymmetric, let alone asymmetric ...

  7. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.

  8. Anticommutative property - Wikipedia

    en.wikipedia.org/wiki/Anticommutative_property

    In mathematical physics, where symmetry is of central importance, or even just in multilinear algebra these operations are mostly (multilinear with respect to some vector structures and then) called antisymmetric operations, and when they are not already of arity greater than two, extended in an associative setting to cover more than two arguments.

  9. Binary relation - Wikipedia

    en.wikipedia.org/wiki/Binary_relation

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...