enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    The Lagrangian is a function of time since the Lagrangian density has implicit space dependence via the fields, and may have explicit spatial dependence, but these are removed in the integral, leaving only time in as the variable for the Lagrangian.

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    This constant is called the Lagrange multiplier. (In some conventions λ {\displaystyle \lambda } is preceded by a minus sign). Notice that this method also solves the second possibility, that f is level: if f is level, then its gradient is zero, and setting λ = 0 {\displaystyle \lambda =0} is a solution regardless of ∇ x , y g ...

  4. Lagrangian (field theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_(field_theory)

    In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...

  5. Lagrangian system - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_system

    A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold J r Y of Y. A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O ∗ ∞ ( Y ) of exterior forms on jet manifolds of Y → X .

  6. Relativistic Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Lagrangian...

    The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.

  7. Constant of motion - Wikipedia

    en.wikipedia.org/wiki/Constant_of_motion

    A subset of the constants of motion are the integrals of motion, or first integrals, defined as any functions of only the phase-space coordinates that are constant along an orbit. Every integral of motion is a constant of motion, but the converse is not true because a constant of motion may depend on time. [2]

  8. Standard Model - Wikipedia

    en.wikipedia.org/wiki/Standard_Model

    The Dirac Lagrangian of the quarks coupled to the gluon fields is given by = ¯, where is a three component column vector of Dirac spinors, each element of which refers to a quark field with a specific color charge (i.e. red, blue, and green) and summation over flavor (i.e. up, down, strange, etc.) is implied.

  9. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    File:Lagrangian vs Eulerian [further explanation needed] Eulerian perspective of fluid velocity versus Lagrangian depiction of strain.. In classical field theories, the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time.