Search results
Results from the WOW.Com Content Network
The equivalent carbon content concept is used on ferrous materials, typically steel and cast iron, to determine various properties of the alloy when more than just carbon is used as an alloyant, which is typical. The idea is to convert the percentage of alloying elements other than carbon to the equivalent carbon percentage, because the iron ...
As the equivalent carbon content rises, the weldability of the alloy decreases. [ 4 ] High-strength low-alloy steels (HSLA) were developed especially for welding applications during the 1970s, and these generally easy to weld materials have good strength, making them ideal for many welding applications.
Zone II includes most carbon steels with a carbon content above 0.10%. Steels in this zone can be prone to cold cracks. In this case, it is preferable to use low hydrogen filler and slow the cooling rate during welding process. Zone III includes alloy steels with a carbon content above 0.10% and a high carbon equivalent index. Materials in this ...
The hardenability of ferrous alloys, i.e. steels, is a function of the carbon content and other alloying elements and the grain size of the austenite. [1] The relative importance of the various alloying elements is calculated by finding the equivalent carbon content of the material.
The Occupational Safety and Health Administration (OSHA) regulation (1910.134(b)) defines the term as "an atmosphere that poses an immediate threat to life, would cause irreversible adverse health effects, or would impair an individual's ability to escape from a dangerous atmosphere." [2]
There are a couple of noteworthy enhancements with ASTM A992. Material ductility is well defined since a maximum yield-to-tensile strength ratio of 0.85 is specified. Additionally, weldability is improved since a maximum carbon equivalent value of 0.45 (0.47 for Group 4 and 5 shapes) is required. ASTM A992 is written to cover all hot-rolled ...
Hydrogen is used for welding of nickel and some stainless steels, especially thicker pieces. It improves the molten metal fluidity, and enhances cleanness of the surface. It is added to argon in amounts typically under 10%. It can be added to argon-carbon dioxide blends to counteract the oxidizing effects of carbon dioxide.
The process is generally limited to low carbon equivalent steels, especially at greater depths, because of hydrogen-caused cracking. [2] Wet welding with a stick electrode is done with similar equipment to that used for dry welding, but the electrode holders are designed for water cooling and are more heavily insulated.