enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    An example of a source of this uncertainty would be the drag in an experiment designed to measure the acceleration of gravity near the earth's surface. The commonly used gravitational acceleration of 9.8 m/s² ignores the effects of air resistance, but the air resistance for the object could be measured and incorporated into the experiment to ...

  3. Uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_analysis

    In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.

  4. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    Quantify the uncertainty in each input (e.g. ranges, probability distributions). Note that this can be difficult and many methods exist to elicit uncertainty distributions from subjective data. [14] Identify the model output to be analysed (the target of interest should ideally have a direct relation to the problem tackled by the model).

  5. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    (1) The Type I bias equations 1.1 and 1.2 are not affected by the sample size n. (2) Eq(1.4) is a re-arrangement of the second term in Eq(1.3). (3) The Type II bias and the variance and standard deviation all decrease with increasing sample size, and they also decrease, for a given sample size, when x's standard deviation σ becomes small ...

  6. Quantification of margins and uncertainties - Wikipedia

    en.wikipedia.org/wiki/Quantification_of_margins...

    Quantification of Margins and Uncertainty (QMU) is a decision support methodology for complex technical decisions. QMU focuses on the identification, characterization, and analysis of performance thresholds and their associated margins for engineering systems that are evaluated under conditions of uncertainty, particularly when portions of those results are generated using computational ...

  7. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  8. Experimental benchmarking - Wikipedia

    en.wikipedia.org/wiki/Experimental_benchmarking

    This estimate can then be compared to the findings of observational research. Note that benchmarking is an attempt to calibrate non-statistical uncertainty (flaws in underlying assumptions). When combined with meta-analysis this method can be used to understand the scope of bias associated with a specific area of research.

  9. Measurement uncertainty - Wikipedia

    en.wikipedia.org/wiki/Measurement_uncertainty

    Relative uncertainty is the measurement uncertainty relative to the magnitude of a particular single choice for the value for the measured quantity, when this choice is nonzero. This particular single choice is usually called the measured value, which may be optimal in some well-defined sense (e.g., a mean, median, or mode). Thus, the relative ...