Search results
Results from the WOW.Com Content Network
Other phenomena can be modeled by simple harmonic motion, including the motion of a simple pendulum, although for it to be an accurate model, the net force on the object at the end of the pendulum must be proportional to the displacement (and even so, it is only a good approximation when the angle of the swing is small; see small-angle ...
A simple pendulum exhibits approximately simple harmonic motion under the conditions of no damping and small amplitude. Assuming no damping, the differential equation governing a simple pendulum of length l {\displaystyle l} , where g {\displaystyle g} is the local acceleration of gravity , is d 2 θ d t 2 + g l sin θ = 0. {\displaystyle ...
"Force" derivation of Figure 1. Force diagram of a simple gravity pendulum. Consider Figure 1 on the right, which shows the forces acting on a simple pendulum. Note that the path of the pendulum sweeps out an arc of a circle. The angle θ is measured in radians, and this is crucial for this formula.
The equation of the simple harmonic motion with frequency for the displacement () is given by ¨ + =. If the frequency is constant, the solution is simply given by = (+).But if the frequency is allowed to vary slowly with time = (), or precisely, if the characteristic time scale for the frequency variation is much smaller than the time period of oscillation, i.e., | |, then it can be shown ...
When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.
Phase portrait of van der Pol's equation, + + =. Simple pendulum, see picture (right). Simple harmonic oscillator where the phase portrait is made up of ellipses centred at the origin, which is a fixed point. Damped harmonic motion, see animation (right).
Harmonic motion can mean: the displacement of the particle executing oscillatory motion that can be expressed in terms of sine or cosine functions known as harmonic motion . The motion of a Harmonic oscillator (in physics), which can be: Simple harmonic motion; Complex harmonic motion; Keplers laws of planetary motion (in physics, known as the ...
There may easily be more than one microstate with the same macrostate. For example, for a fixed temperature, the system could have many dynamic configurations at the microscopic level. When used in this sense, a phase is a region of phase space where the system in question is in, for example, the liquid phase, or solid phase, etc.