enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.

  4. Lowest common denominator - Wikipedia

    en.wikipedia.org/wiki/Lowest_common_denominator

    Here, 36 is the least common multiple of 12 and 18. Their product, 216, is also a common denominator, but calculating with that denominator involves larger numbers:

  5. Arithmetic progression topologies - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression...

    where ⁡ (,) is the least common multiple of and . [4] Similarly, one-sided arithmetic ... This page was last edited on 15 October 2024, at 07:56 (UTC).

  6. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    The least common multiple of a and b is equal to their product ab, i.e. lcm(a, b) = ab. [4] As a consequence of the third point, if a and b are coprime and br ≡ bs (mod a), then r ≡ s (mod a). [5] That is, we may "divide by b" when working modulo a.

  7. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier.

  8. LCM - Wikipedia

    en.wikipedia.org/wiki/Lcm

    LCM may refer to: Computing and mathematics. Latent class model, a concept in statistics; Least common multiple, a function of two integers; Living Computer Museum;

  9. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra.