Search results
Results from the WOW.Com Content Network
The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]
Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...
Published values for log K 1 and log K D are 5.89 and 2.05, respectively. [2] Using these values and the equality conditions, the concentrations of the three species, chromate CrO 2− 4 , hydrogen chromate HCrO − 4 and dichromate Cr 2 O 2− 7 can be calculated, for various values of pH, by means of the equilibrium expressions.
With specific values for C a and K a this quadratic equation can be solved for x. Assuming [4] that pH = −log 10 [H +] the pH can be calculated as pH = −log 10 x. If the degree of dissociation is quite small, C a ≫ x and the expression simplifies to = and pH = 1 / 2 (pK a − log C a).
A strong acid, such as hydrochloric acid, at concentration 1 mol dm −3 has a pH of 0, while a strong alkali like sodium hydroxide, at the same concentration, has a pH of 14. Since pH is a logarithmic scale, a difference of one in pH is equivalent to a tenfold difference in hydrogen ion concentration.
The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...
This equation is the equation of a straight line for as a function of pH with a slope of () volt (pH has no units). This equation predicts lower E h {\displaystyle E_{h}} at higher pH values. This is observed for the reduction of O 2 into H 2 O, or OH − , and for reduction of H + into H 2 .
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.