enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alpha helix - Wikipedia

    en.wikipedia.org/wiki/Alpha_helix

    The pitch of the alpha-helix (the vertical distance between consecutive turns of the helix) is 5.4 Å (0.54 nm), which is the product of 1.5 and 3.6. The most important thing is that the N-H group of one amino acid forms a hydrogen bond with the C=O group of the amino acid four residues earlier; this repeated i + 4 → i hydrogen bonding is the ...

  3. Protein secondary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_secondary_structure

    G = 3-turn helix (3 10 helix). Min length 3 residues. H = 4-turn helix . Minimum length 4 residues. I = 5-turn helix . Minimum length 5 residues. T = hydrogen bonded turn (3, 4 or 5 turn) E = extended strand in parallel and/or anti-parallel β-sheet conformation. Min length 2 residues.

  4. Supersecondary structure - Wikipedia

    en.wikipedia.org/wiki/Supersecondary_structure

    The beta strands are parallel, and the helix is also almost parallel to the strands. This structure can be seen in almost all proteins with parallel strands. The loops connecting the beta strands and alpha helix can vary in length and often binds ligands. Beta-alpha-beta helices can be either left-handed or right-handed.

  5. Helix - Wikipedia

    en.wikipedia.org/wiki/Helix

    The pitch of a helix is the height of one complete helix turn, measured parallel to the axis of the helix. A double helix consists of two (typically congruent) helices with the same axis, differing by a translation along the axis. [3] A circular helix (i.e. one with constant radius) has constant band curvature and constant torsion. The slope of ...

  6. Protein structure prediction - Wikipedia

    en.wikipedia.org/wiki/Protein_structure_prediction

    An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns). The alignment of the H-bonds ...

  7. Hydrophobicity scales - Wikipedia

    en.wikipedia.org/wiki/Hydrophobicity_scales

    Hydrophobicity scales can also be obtained by calculating the solvent accessible surface areas for amino acid residues in the expended polypeptide chain [22] or in alpha-helix and multiplying the surface areas by the empirical solvation parameters for the corresponding types of atoms. [3]

  8. 310 helix - Wikipedia

    en.wikipedia.org/wiki/310_helix

    The dihedral angles in the 3 10 helix, relative to those of the α helix, could be attributed to the short lengths of these helices – anywhere from 3 to 5 residues long, compared with the 10 to 12 residue lengths of their α-helix contemporaries. 3 10-helices often arise in transitions, leading to typically short residue lengths that result ...

  9. Helical wheel - Wikipedia

    en.wikipedia.org/wiki/Helical_wheel

    A helical wheel is a type of plot or visual representation used to illustrate the properties of alpha helices in proteins. The sequence of amino acids that make up a helical region of the protein's secondary structure are plotted in a rotating manner where the angle of rotation between consecutive amino acids is 100°, so that the final ...