Search results
Results from the WOW.Com Content Network
At the line search step (2.3), the algorithm may minimize h exactly, by solving ′ =, or approximately, by using one of the one-dimensional line-search methods mentioned above. It can also be solved loosely , by asking for a sufficient decrease in h that does not necessarily approximate the optimum.
The linear search problem for a general probability distribution is unsolved. [5] However, there exists a dynamic programming algorithm that produces a solution for any discrete distribution [6] and also an approximate solution, for any probability distribution, with any desired accuracy. [7] The linear search problem was solved by Anatole Beck ...
An upper bound for a decision-tree model was given by Meyer auf der Heide [17] who showed that for every n there exists an O(n 4)-deep linear decision tree that solves the subset-sum problem with n items. Note that this does not imply any upper bound for an algorithm that should solve the problem for any given n.
Seidel (1991) gave an algorithm for low-dimensional linear programming that may be adapted to the LP-type problem framework. Seidel's algorithm takes as input the set S and a separate set X (initially empty) of elements known to belong to the optimal basis. It then considers the remaining elements one-by-one in a random order, performing ...
In the same situation where = (), an interesting question is how large learning rates can be chosen in Armijo's condition (that is, when one has no limit on as defined in the section "Function minimization using backtracking line search in practice"), since larger learning rates when is closer to the limit point (if exists) can make convergence ...
The aim of local search is that of finding an assignment of minimal cost, which is a solution if any exists. Point A is not a solution, but no local move from there decreases cost. However, a solution exists at point B. Two classes of local search algorithms exist. The first one is that of greedy or non-randomized algorithms. These algorithms ...
However, the criss-cross algorithm need not maintain feasibility, but can pivot rather from a feasible basis to an infeasible basis. The criss-cross algorithm does not have polynomial time-complexity for linear programming. Both algorithms visit all 2 D corners of a (perturbed) cube in dimension D, the Klee–Minty cube, in the worst case. [15 ...
Karmarkar's algorithm falls within the class of interior-point methods: the current guess for the solution does not follow the boundary of the feasible set as in the simplex method, but moves through the interior of the feasible region, improving the approximation of the optimal solution by a definite fraction with every iteration and ...