Search results
Results from the WOW.Com Content Network
The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
More generally, if x = b y, then y is the logarithm of x to base b, written log b x, so log 10 1000 = 3. As a single-variable function, the logarithm to base b is the inverse of exponentiation with base b. The logarithm base 10 is called the decimal or common logarithm and is commonly used in science and engineering.
The logarithm keys (log for base-10 and ln for base-e) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation. The numerical value for logarithm to the base 10 can be calculated with the following identities: [5]
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
where is the Boltzmann constant (also written as simply ) and equal to 1.380649 × 10 −23 J/K, and is the natural logarithm function (or log base e, as in the image above). In short, the Boltzmann formula shows the relationship between entropy and the number of ways the atoms or molecules of a certain kind of thermodynamic system can be arranged.
A probability distribution is not uniquely determined by the moments E[X n] = e nμ + 1 / 2 n 2 σ 2 for n ≥ 1. That is, there exist other distributions with the same set of moments. [4] In fact, there is a whole family of distributions with the same moments as the log-normal distribution. [citation needed]
In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2]