Search results
Results from the WOW.Com Content Network
The first equation is applicable to the standard model of the troposphere in which the temperature is assumed to vary with altitude at a lapse rate of ; the second equation is applicable to the standard model of the stratosphere in which the temperature is assumed not to vary with altitude. Equation 1: = [()] ()
The variation in temperature that occurs from the highs of the day to the cool of nights is called diurnal temperature variation. Temperature ranges can also be based on periods of a month or a year. The size of ground-level atmospheric temperature ranges depends on several factors, such as: Average air temperature; Average humidity; The regime ...
The equation that relates the two altitudes are (where z is the geometric altitude, h is the geopotential altitude, and r 0 = 6,356,766 m in this model): = Note that the Lapse Rates cited in the table are given as °C per kilometer of geopotential altitude, not geometric altitude.
In the absence of such extreme air-mass changes, diurnal temperature variations typically range from 10 °F (5.6 °C) or smaller in humid, tropical areas, up to 40 to 50 °F (22.2 to 27.8 °C) in higher-elevation, arid to semi-arid areas, such as parts of the U.S. Western states' Intermountain Plateau areas, for example Elko, Nevada, Ashton ...
These figures should be compared with the temperature and density of Earth's atmosphere plotted at NRLMSISE-00, which shows the air density dropping from 1200 g/m 3 at sea level to 0.125 g/m 3 at 70 km, a factor of 9600, indicating an average scale height of 70 / ln(9600) = 7.64 km, consistent with the indicated average air temperature over ...
This atmospheric model assumes both molecular weight and temperature are constant over a wide range of altitude. Such a model may be called isothermal (constant temperature). Inserting constant molecular weight and constant temperature into the equation for the ideal gas law produces the result that density and pressure, the two remaining ...
The division of the atmosphere into layers mostly by reference to temperature is discussed above. Temperature decreases with altitude starting at sea level, but variations in this trend begin above 11 km, where the temperature stabilizes over a large vertical distance through the rest of the troposphere.
Thus the standard consists of a tabulation of values at various altitudes, plus some formulas by which those values were derived. To allow modeling conditions below mean sea level , the troposphere is actually extended to −2,000 feet (−610 m), where the temperature is 66.1 °F (18.9 °C), pressure is 15.79 pounds per square inch (108,900 Pa ...