enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  3. Rotational frequency - Wikipedia

    en.wikipedia.org/wiki/Rotational_frequency

    It can also be formulated as the instantaneous rate of change of the number of rotations, N, with respect to time, t: n=dN/dt (as per International System of Quantities). [4] Similar to ordinary period, the reciprocal of rotational frequency is the rotation period or period of rotation, T=ν −1 =n −1, with dimension of time (SI unit seconds).

  4. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    In engineering, the mass transfer coefficient is a diffusion rate constant that relates the mass transfer rate, mass transfer area, and concentration change as driving force: [1] = ˙ Where: is the mass transfer coefficient [mol/(s·m 2)/(mol/m 3)], or m/s

  5. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.

  6. Rotational diffusion - Wikipedia

    en.wikipedia.org/wiki/Rotational_diffusion

    The standard translational model of Brownian motion. Much like translational diffusion in which particles in one area of high concentration slowly spread position through random walks until they are near-equally distributed over the entire space, in rotational diffusion, over long periods of time the directions which these particles face will spread until they follow a completely random ...

  7. Rotational spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Rotational_spectroscopy

    Rotational spectroscopy has primarily been used to investigate fundamental aspects of molecular physics. It is a uniquely precise tool for the determination of molecular structure in gas-phase molecules. It can be used to establish barriers to internal rotation such as that associated with the rotation of the CH 3 group relative to the C 6 H

  8. Rotational–vibrational spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Rotational–vibrational...

    The energy change of rotation can be either subtracted from or added to the energy change of vibration, giving the P- and R- branches of the spectrum, respectively. The calculation of the transition wavenumbers is more complicated than for pure rotation because the rotational constant B ν is different in the ground and excited vibrational states.

  9. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]