Search results
Results from the WOW.Com Content Network
The lateral surface area of a right circular cone is = where is the radius of the circle at the bottom of the cone and is the slant height of the cone. [4] The surface area of the bottom circle of a cone is the same as for any circle, . Thus, the total surface area of a right circular cone can be expressed as each of the following:
Thus the lateral surface of a cube will be the area of four faces: 4a 2. More generally, the lateral surface area of a prism is the sum of the areas of the sides of the prism. [1] This lateral surface area can be calculated by multiplying the perimeter of the base by the height of the prism. [2] For a right circular cylinder of radius r and ...
The lateral surface volume of a right spherical cone is = where is the radius of the spherical base and is the slant height of the cone (the distance between the 2D surface of the sphere and the apex).
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
The formula for the volume of a pyramidal square frustum was introduced by the ancient Egyptian mathematics in what is called the Moscow Mathematical Papyrus, written in the 13th dynasty (c. 1850 BC): = (+ +), where a and b are the base and top side lengths, and h is the height.
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...
The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A /2 and r = 1 . The solid angle of a cone with its apex at the apex of the solid angle, and with apex angle 2 θ , is the area of a spherical cap on a unit sphere
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.