enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    This equation can be rewritten as () =, where the quantity ru satisfies the one-dimensional wave equation. Therefore, there are solutions in the form (,) = + (+), where F and G are general solutions to the one-dimensional wave equation and can be interpreted as respectively an outgoing and incoming spherical waves.

  3. d'Alembert's formula - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_formula

    All second order differential equations with constant coefficients can be transformed into their respective canonic forms. This equation is one of these three cases: Elliptic partial differential equation, Parabolic partial differential equation and Hyperbolic partial differential equation.

  4. One-way wave equation - Wikipedia

    en.wikipedia.org/wiki/One-way_wave_equation

    The one-way equation and solution in the three-dimensional case was assumed to be similar way as for the one-dimensional case by a mathematical decomposition (factorization) of a 2nd order differential equation. [15] In fact, the 3D One-way wave equation can be derived from first principles: a) derivation from impedance theorem [3] and b ...

  5. Wave packet - Wikipedia

    en.wikipedia.org/wiki/Wave_packet

    This relation should be valid so that the plane wave is a solution to the wave equation. As the relation is linear , the wave equation is said to be non-dispersive . To simplify, consider the one-dimensional wave equation with ω(k) = ±kc .

  6. Duhamel's principle - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_principle

    Intuitively, one can think of the inhomogeneous problem as a set of homogeneous problems each starting afresh at a different time slice t = t 0. By linearity, one can add up (integrate) the resulting solutions through time t 0 and obtain the solution for the inhomogeneous problem. This is the essence of Duhamel's principle.

  7. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    One particular solution to the time-independent Schrödinger equation is = /, a plane wave, which can be used in the description of a particle with momentum exactly p, since it is an eigenfunction of the momentum operator. These functions are not normalizable to unity (they are not square-integrable), so they are not really elements of physical ...

  8. Hyperbolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_partial...

    The one-dimensional wave equation: = is an example of a hyperbolic equation. The two-dimensional and three-dimensional wave equations also fall into the category of hyperbolic PDE. This type of second-order hyperbolic partial differential equation may be transformed to a hyperbolic system of first-order differential equations. [2]: 402

  9. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The two-dimensional analogue of the vibrating string is the vibrating membrane, with the edges clamped to be motionless. The Helmholtz equation was solved for many basic shapes in the 19th century: the rectangular membrane by Siméon Denis Poisson in 1829, the equilateral triangle by Gabriel Lamé in 1852, and the circular membrane by Alfred Clebsch in 1862.